DETERMINING THE SIZE SPECTRUM OF CYLINDRICAL
PARTICLES FROM THE LOW-ANGLE INDICATRIX OF
LIGHT DISPERSION

G. D. Petrov and R. N. Sokolov UDC 532.528;7:541.182.3

Formulas are derived for calculating the size spectrum of cylindrical particles by the low-
angle method, and the accuracy of this method is evaluated.

A theory and experimental methods of determining the size spectrum of spherical particles in a sus-
pension have been developed in [1-4]., In many instances, however, it is necessary to determine the size
spectrum of particles with other than spherical shapes,

We will determine the spectrum of cylindrical particles in a suspension where the cylinder length ]
can be expressed as a function of the cylinder radius a:
I =1(a).
The problem reduces to solving the integral equation

©

1) = loéf N(@i@ g, Pda (1)
for N@).

The diffraction of rays at a cluster of cylindrical particles oriented at-random in space follows the
law [5]:

1) — lokzaﬁf%ﬁ“m : @

where

E (kaf) = [/ gy - (haB).

We introduce

= ==, 3
P A 3)
and let
la =m; 4)
so that
1 %
In= 5 Jmﬁ,/z (0B) N (0) p*dp, (5)
1}
where
In = 41 B)/F . )
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#%e) A%} ap We now define
10)
D (p) = N () 0°m. @)
20 For solving the integral equation (5) we will use the Titchmarsch trans-
- _#22) formation [6]. Then
-
a5 ¢
) I d
_#%e)ap @)= — | g5 B F 6B, ®
a4 ’
\ where
92
F(oB) = .. (0B) Y./, (0B) 0B, )
2m \3
0 v 20 3 4 Z = (—}:) . (10)

From formula (8) we can determine mN(g). With m known, the distribu-

Fig.1l. Function R%(z) and
tion function density can also be found; in this case

the approximating function

R}, (2) as functions of the ® (a) = alN (). (11)
parameter z = kpg (all In the case of soft cylindrical particles, the intensity of dispersed radia-
quantities dimensionless).  tion is described by the well known Debye equation
14+ cos?p V2 =
=1, 5 Tm @*R® (2), (12)
where
2z . 2
R @ =[S (7F) (19
2 @ 4 .
[4]

Within the range of values z from 0 to 50 one may approximate function R () by ﬁzap z):
Rn (2) = exp [ — 0.352] — 0,003z -+ 0.15. : (14)
Function R?(z) and the approximating function I_{zap (z) are both shown in Fig.1.

For apolydisperse suspension one may write

1(8) =? at {éxp [ —0.352] —0.003z - 0.15} N (a) da. (15)
9 :
We note that 1= (21/1 o/ @m2a8(L + cos?8)). Then, after simple transformations, we obtain
)= jia“N {@) exp [ — 0.352]-da — 0.003%fn 3 N(a)a'da -+ 0.155 N {a) a*da (18)
or |
) :fa‘w(a) exp[ —0.35z] da — Ap +C, (17)

0

where A and C are constants.

The first term in expression (16) represents the well known Laplace integral. It is easy to see that
this integral is convergent. The magnitude of the first term decreases as 8 increases, and it becomes a
linear function of 3 at large angles £

—I®)=—4+C. (18)

We will show that for a y-distribution
N (a) = abexp [ —ca], (19)

where b and ¢ are distribution parameters,

Inserting (L9) into (16) and utilizing the properties of the I'-function, we have

for A=10.63 pm 2z = 5maf, (20)
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] —_;r.ﬂi]l_—0015r(b+8)+-015( 7 (1)

and the variable part of (21) is

Ie= (5nB -+ ¢)**7 . ctts o7
o 1 0.015m (b + 7) 0.15
Var I () = Gl e P+ e (22)

Numerical calculations have shown that Varf(,@) represents the major part of (16) within angles from
0 to 0.1 rad, The computations were made with the following values of the distribution parameters: 1) b = 2,
c=2,m=10and 2) b =2, ¢c =4, m =10, Analogous results were obtained from an analysis of the Junge

distribution,

We now introduce

with

where £ = mma/A.

LB)=1@—~AB+0), (23)

@(ﬂ) =N (a) ot (24)

7,8 =1 (@) exp[ —Ea} da, (25)
[

1 (B) =0§ P (g)eshdg,, (26)

We then invert the integral equation (26) with the aid of the Mellin transform [7];

o«

On the basis of 27) we have now

Considering that &(a)

F(s)= Off@l)e Stdg,,
ri i (27)
o(l)= ™y Y F (S)eSa dS.
1 r+io
@ (a) = e 1; (EB) exp [EP] 4B. (28)
L Yie

= N{a)a®, (28) yields the sought distribution density of soft cylindrical particles.

NOTATION

is the ¢ylinder radius;

is the cylinder length;

is the angular-distribution function of dispersed light intensity, determined experimen-
tally;

is the dispersion angle;

is the incident light intensity;

is the wave number;

is the radiation wavelength;

is the kernel of the integral equation, determined by the optical properties ofa particle;
is the refractive index of a particle;

are the half-order Bessel functions of the first and of the second kind respectively;
are the dispersion efficiency factors;

is the approximation to function R (z);

is the density of particle distribution function;

is the particle volume;

are the Laplace-transform operators,
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